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Abstract
Anderson localization of classical waves in disordered media is a fundamental
physical phenomenon that has attracted attention in the past three decades. More
recently, localization of polar excitations in nanostructured metal–dielectric
films (also known as random planar composites) has been subject of intense
studies. Potential applications of planar composites include local near-field
microscopy and spectroscopy. A number of previous studies have relied on the
quasistatic approximation and a direct analogy with localization of electrons
in disordered solids. Here I consider the localization problem without the
quasistatic approximation. I show that localization of polar excitations is
characterized by algebraic rather than by exponential spatial confinement. This
result is also valid in two and three dimensions. I also show that the previously
used localization criterion based on the gyration radius of eigenmodes is
inconsistent with both exponential and algebraic localization. An alternative
criterion based on the dipole participation number is proposed. Numerical
demonstration of a localization–delocalization transition is given. Finally, it is
shown that, contrary to the previous belief, localized modes can be effectively
coupled to running waves.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Anderson localization (AL) of classical waves in disordered systems is a fundamental physical
phenomenon which takes place in the limit of strong resonant scattering when the ‘photon mean
free path’ becomes the order of or less than one wavelength (the Ioffe–Regel criterion) [1]. At
a formal level, AL of electromagnetic or acoustic waves is similar to localization of electrons
in disordered solids. There are, however, substantial physical differences. One such difference
is that the motion of electrons can be finite. In contrast, classical waves cannot be, in principle,
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indefinitely confined in a finite spatial region. In the case of electrons, one of the most important
physical manifestations of AL (at zero temperature) is the conductor–insulator transition [2].
Localization of classical waves is manifested differently. If we consider an experiment in which
classical waves are transmitted through a disordered slab, an analogue of conductivity is the
transmission coefficient. Assuming that the slab material is non-absorbing, the transmission
coefficient can never turn to zero. However, if the waves are localized in the slab, the
transmitted and reflected fields exhibit spatial variations at macroscopic scales (much larger
than the wavelength) which are sample-specific (not self-averaging). Emission by localized
modes in random positive-gain media is the basis for operation of random lasers [3]. Thus, the
common feature of localized states of both electrons and classical waves is that the propagation
cannot be described by the Boltzmann transport equation or the diffusion approximation to the
former.

This paper is focused on AL of electromagnetic waves in a random structure which is
distinctly different from either two-dimensional or three-dimensional random media. Namely,
we will consider random planar composites (RPCs) [4]. The RPCs are made of small three-
dimensional scatterers which are randomly distributed in a thin planar layer. Thus, the
electromagnetic interaction in this system is essentially three-dimensional while the geometry
is two-dimensional. The RPCs have attracted considerable recent attention due to the variety
of potential applications, including surface-enhanced Raman spectroscopy of proteins [5–7].
The physical implication of AL of electromagnetic waves in RPCs can be best understood
by considering an experiment in which the sample is excited by a near-field probe. If the
electromagnetic states in the sample are strongly localized (at the particular electromagnetic
frequency), the surface plasmon induced by the tip will also be localized and not spread over
the entire sample. It must be emphasized, however, that there are other mechanisms that can
lead to spatial exponential decay of surface plasmons. This includes decay due to absorption,
Ohmic losses in the material and exponential decay of evanescant waves.

The localization–delocalization transition is expected to play a crucial role in the near-
field tomographic imaging techniques of [8, 9]. If the states are localized, each near-field
measurements will be sensitive only to the local environment of the tip, while in the opposite
case, it would be sensitive to the structure of the sample far away from the tip. The relation
between AL and transport of surface plasmons is discussed in detail in section 3.

The possibility and nature of AL of electromagnetic excitations in the RPCs have been
investigated theoretically and numerically [4, 10]. While the conclusions given in these two
references are somewhat conflicting, the respective theoretical approaches share some common
features. Most importantly, localization of the surface plasmon eigenmodes was studied in
the quasistatic approximation. However, AL is, essentially, an interference phenomenon [1].
Therefore, an account of retardation is essential for its proper understanding. Second, a
definition of localization length of a mode based on its ‘radius of gyration’ was adopted
in [4, 10]. Here I argue that this definition, as well as the one based on radiative quality factor
(mode lifetime) [11, 12], cannot be applied to the electromagnetic localization problem in the
RPCs.

Below, I discuss a number of important points concerning AL of classical waves; some of
them are applicable only to the RPCs and some are more general. I also provide a numerical
demonstration of the Anderson transition in the RPCs. To this end, I use a simple but physically
relevant model of small spherical inclusions of diameter D embedded in a transparent dielectric
host medium and randomly distributed in a plane inside an L × L box. Essentially, this is the
model used in [11, 12]. However, I work in a different physical regime and use a different
definition for localization. Most of the numerical examples shown below were obtained in the
limit D � � � λ � L, where � is the average interparticle distance and λ is the wavelength.
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2. Physical model

Consider an infinite transparent dielectric host with N small identical spherical inclusions of
diameter D randomly distributed in an L × L box in the xy-plane. The inclusions interact with
a plane linearly polarized electromagnetic wave with the wavenumber k = nω/c = 2π/λ,
where n is the host index of refraction, and ω is the electromagnetic frequency. We assume
that λ � D, but the relation between λ and L is arbitrary. Thus, we do not use the quasistatic
approximation. However, we do use the dipole approximation which is accurate in the limit
of small density of inclusions and D � λ. Assuming that the inclusions are non-magnetic,
the electric dipole moments di (i = 1, . . . , N) induced in each spherical inclusion satisfy the
coupled-dipole equation

di = α

[
Einc exp(ikinc · ri )+

∑
j �=i

G(ri , r j )d j

]
, (1)

where Einc is the amplitude of the incident wave, |kinc| = k, α is the polarizability of inclusion,
ri is the radius-vector of the i th inclusion and G(ri , r j ) is the dyadic Green’s function for the
electric field in a homogeneous infinite host medium given by

G(ri , r j ) = k3
[
A(kri j)I + B(kri j)r̂i j ⊗ r̂i j

]
, (2)

A(x) = [x−1 + ix−2 − x−3] exp(ix), (3)

B(x) = [−x−1 − 3ix−2 + 3x−3] exp(ix). (4)

Here I is the unit dyadic, ri j = r j − ri , ri j = |ri j |, r̂i j = ri j/ri j and ⊗ denotes tensor product.
The system of equation (1) can be written in operator form as

|d〉 = α(|Einc〉 + W |d〉). (5)

Here the Cartesian components of all dipole moments are given by di,σ = 〈i, σ |d〉, where
i = 1, . . . , N and σ = x, y, z. The above relation defines the orthonormal basis |i, σ 〉.

The 3N-dimensional matrix W is complex symmetric and, hence, non-Hermitian. Since
such matrices are not very common in physics, a brief review of their spectral properties
is adduced. Eigenvalues of complex symmetric matrices are, generally, complex. The
eigenvectors form a complete (but not orthonormal) basis unless the matrix is defective. A
matrix is defective if one of its eigenvectors is quasi-null, e.g., its dot product with itself
(without complex conjugation) is zero (see below). The geometric multiplicity of a defective
matrix is less than its algebraic multiplicity. Non-degenerate symmetric matrices are all non-
defective. A matrix can be defective as a result of random degeneracy. The probability of
such event is, however, vanishingly small. Below, we assume that W is non-defective, which
was the case in all numerical simulations shown below. Further, let |a〉 and |b〉 be two distinct
eigenvectors of W with components 〈n|a〉 = an and 〈n|b〉 = bn. The usual orthogonality
condition 〈a|b〉 = 0 is replaced by∑

n

anbn ≡ 〈ā|b〉 = 0. (6)

Note that the bilinear form in the above formula is defined without complex conjugation. Such
forms are called quasi-scalar products and are denoted by 〈ā|b〉, in contrast to the true scalar
product 〈a|b〉. The quasi-scalar product of a vector with itself, 〈ā|a〉, is, generally, a complex
number, possibly zero. A vector whose quasi-scalar product with itself is zero is called quasi-
null. At the same time, each eigenvector (including quasi-null vectors) can be normalized in
the usual way, so that 〈a|a〉 = 1.

Let wn and |ψn〉 be the set of 3N eigenvalues and eigenvectors of W . We assume here
that |ψn〉 are normalized so that 〈ψn |ψn〉 = 1. However, the quasi-scalar product 〈ψn |ψn〉 is, in
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general, a complex number. We can use the orthogonality rule (6) to obtain the spectral solution
to (5):

|d〉 =
∑

n

|ψn〉〈ψ̄n |Einc〉
〈ψ̄n |ψn〉(z −wn)

, (7)

where z = 1/α. We note that this spectral solution has been obtained assuming there are no
quasi-null eigenvectors. In the opposite case, a spectral solution cannot be obtained.

For non-absorbing inclusions, Im z = −2k3/3. This equality can be readily obtained by
observing that the extinction cross section σe = 4πk Im α and the scattering cross section
σs = (8πk4/3)|α|2 must be equal in the absence of absorption [13] (α = 1/z). Analogously,
in the case of finite absorption, we have Im z < −2k3/3. Consequently, energy conservation
requires [14] that Imwn � −2k3/3. The eigenstates with Imwn = −2k3/3 are non-radiating1

while the eigenstates with Imwn ∼ N(2k3/3) > 0 are super-radiating. The radiative quality
factor of the mode is defined as Qn = 1/γn,

γn = Im[wn/(2k3/3)] + 1. (8)

For a non-radiating state, γn → 0 and Qn → ∞. The coupling constant fn for the nth mode
is defined as

fn = 〈Einc|ψn〉〈ψ̄n |Einc〉[|Einc|2〈ψ̄n |ψn〉]−1; (9)

the fns satisfy the sum rule
∑

n fn = N .

3. The concept of Anderson localization for polar eigenmodes

In this section I discuss in more detail the concept of AL of polar eigenmodes and the relation
between localization and transport properties. In particular, a rationale is given for studying
spatial properties of the eigenmodes which depend only on the sample geometry but not on the
material properties of the host medium or inclusions.

It is well known that the electromagnetic problem of two-component composites, if
solved within the quasistatics, allows for an effective separation of material properties of the
constituents and the geometry of the composite. This idea goes back to the Bergman–Milton
spectral theory of composites [15] and has been used in many different settings. For example,
dipolar (more generally, multipolar) excitations in aggregated spheres were studied in the 1980s
by Fuchs, Claro and co-authors [16–18] using the spectral approach analogous to the Bergman–
Milton spectral theory of composites.

I have extended the quasistatic spectral theory of [15–18] to the case of samples which
are not small compared to the wavelength, e.g., when the effects of retardation are important
in [14, 19]. In this case, similarly to the quasistatics, electromagnetic eigenstates of a two-
component mixture or composite can be defined. These eigenstates turn out to be independent
of the material properties of the constituents, but, unlike in the quasistatic limit, depend
explicitly on k = ω/c. Yet, at a fixed electromagnetic frequency ω, the spatial properties
of the eigenstates can be studied irrespectively of the material properties of the constituents.
In particular, one can argue that in extended systems the eigenstates can be either localized
on several inclusions or delocalized over the whole sample, completely independently of the
material properties. This was the point of view taken in [4, 10].

The connection between propagation of surface plasmon excitations in the system and
the localization properties of the eigenstates can be established by examining the spectral

1 This is because, in this case, and assuming the particles are non-absorbing, the terms Im z and Imwn in the
denominator of (7) cancel each other. Physically, this corresponds to cancellation of radiative reaction due to the
interference effects. See [13, 14] for more details.
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solution (7) for the case of local excitation (e.g., by a near-field tip) at the site r1. If the point
of observation is located at the site r2 (e.g., another near-field tip operating in the collection
regime), the amplitude of the measured signal is proportional to the following Green’s function:

D(r2, r1) =
∑

n

fn(r2, r1)

z −wn
, (10)

where

fn(r2, r1) = 〈r2|ψn〉〈ψ̄n |r1〉
〈ψ̄n |ψn〉 . (11)

Let us assume that at a given electromagnetic frequency ω there are resonance modes, e.g.,
such modes that Re[z(ω) − wn(ω)] ≈ 0. This is, obviously, not always the case, and the
above condition depends, in particular, on the material properties of the medium. However,
if the resonance excitation of the system is, in principle, possible, summation in (10) can be
restricted to resonant modes. In this case, propagation of surface plasmons in the system is
governed by the spatial dependence of the functions fn(r2, r1), where n indexes only resonant
modes.

In a strictly periodic infinite system, all eigenmodes are delocalized plane waves, which
follows from general symmetry considerations. These delocalized modes form a truly
continuous spectrum and can be labelled by a continuous index q , where q is the wavevector
in the first Brillouin zone of the lattice (here the dimension of q is not specified). Note that
the eigenmodes that belong to the continuous spectrum are non-normalizable in the usual
sense. This means that the scalar product 〈ψq |ψq〉 does not exist. Instead, the usual delta-
function normalization 〈ψq |ψq ′ 〉 = δ(q − q ′) must be used. Obviously, functions fq(r2, r1)

that correspond to the delocalized eigenstates are non-decaying as the distance between the
points r1 and r2 increases.

At this point, two important comments must be made. First, the fact that the eigenmodes
|ψq〉 are delocalized plane waves and the corresponding functions fq(r2, r1) are non-decaying
does not necessarily imply that there can be no exponential spatial decay of surface plasmon
excitations in the system. This will be illustrated later in this section with several examples.
Second, eigenvalues in a strictly periodic and non-chiral system are invariant with respect to
the change q → −q and, therefore, doubly degenerate. This does not lead to defectiveness of
the operator W but the degenerate modes must be appropriately orthogonalized.

If we now introduce disorder and break the translational symmetry of an infinite sample,
the eigenmodes |ψn〉 are no longer plane waves. Still, the modes can be either localized or
delocalized. The fundamental property of localized modes is that such modes are square
integrable in the sense that 〈ψn |ψn〉 < ∞ (in fact, localized modes can always be normalized so
that 〈ψn |ψn〉 = 1) and, therefore, belong to the discrete spectrum. There are two consequences
of this fact. First, a localized mode can be characterized by a ‘centre of mass’ or a point near
which it is localized, which we denote by R. Second, localized modes can be labelled by a
countable index. It is natural to use R itself as a label. Let all resonant modes be localized.
Then the Green’s function (10) can be written as

D(r2, r1) =
∑

R

fR(r2, r1)

z −wR
, (12)

where summation is extended over resonant modes. It is clear from inspection of equation (12)
and the definition (11) that the above Green’s function is spatially decaying when |r1 − r2| →
∞, and that the rate of this decay depends on the spatial decay of the eigenmodes.
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However, it can be readily seen that the spatial decay of localized eigenmodes does not
need to be exponential. This is because the essential requirement of localization 〈ψn |ψn〉 <
∞ can be satisfied even if the decay is algebraic. More specifically, it is sufficient that
ψR(r) = 〈r|ψR〉 decays faster than 1/|r − R|d/2, where d is the dimensionality of the sample.
Accordingly, the spatial decay of the Green’s function (12) can be slower than exponential. In
fact, I argue in this paper that electromagnetic eigenstates cannot be localized exponentially.
This is a consequence of algebraic decay of the free-space Green’s function (2) in a transparent
host medium. More specifically, if |ψn〉 is an exponentially localized eigenstate, the equation
W |ψn〉 = wn|ψn〉 cannot be satisfied due to the fact that 〈r|W |ψn〉 is asymptotically algebraic
and 〈r|ψn〉 is asymptotically exponential. The impossibility of exponential localization of
electromagnetic eigenmodes can be also viewed as a consequence of the fact that there are
no bound states for light.

The above arguments apply to infinite samples. However, any numerical computation is
restricted to finite systems. Modes of a finite system are always discrete and have a finite L2

norm. The difference between the modes which remain discrete in the thermodynamic limit and
the modes that become delocalized is then revealed by examining the rate at which these modes
decay. The amplitudes of localized modes decay (away from their ‘centre of mass’ R) faster
than 1/|r− R|d/2. Consequently, a localized mode centred at a point R which is sufficiently far
from the sample boundaries is insensitive to any change in the sample overall size or shape. In
contrast, delocalized modes always remain sensitive to the exact shape of the boundaries. For
example, a delocalized mode would change substantially if the system overall size is doubled,
while a localized mode will be insensitive to such change, as long as it is centred sufficiently
far from the original boundaries.

In light of the above, it is interesting to examine the applicability of a localization criterion
which is based on the eigenmode gyration radius, ξn (defined in section 5 below). This
parameter was used in [4, 10] within the quasistatic approximation. An eigenmode was
considered to be localized if ξn � L, where L is the sample characteristic size. The above
inequality was claimed to be a consequence of exponential localization. First, we note that
the condition ξn � L is not equivalent to (actually, is weaker than) exponential localization
of the eigenmode. As is shown in section 5 below, it is sufficient that the eigenstate exhibits
spatial decay faster than 1/rd/2+1 for the above inequality to hold. But more importantly,
application of this criterion can lead to a grossly inaccurate conclusion about delocalization
of an eigenstate when it is, in fact, strongly localized. The reason for this is numerical.
Indeed, even though localized eigenstates belong to a countable discrete spectrum, the spacings
between eigenvalues wn can be arbitrarily small and tend to decrease with the sample size.
Thus, two localized eigenstates with centres at different points R1 and R2 can have very close
eigenvalues wR1 ≈ wR2 . Numerically, these two eigenstates are quasi-degenerate. That means
that any linear superposition of these two eigenstates is also an eigenstate (within numerical
precision of the computer). Namely, if |ψR1〉 and |ψR2〉 are two quasi-degenerate eigenstates,
then the linear combinations

|ψ±〉 = 1√
2
(|ψR1 〉 ± |ψR2〉)

are also eigenstates (within the numerical precision). But the gyration radii of |ψR1〉, |ψR2 〉,
on one hand, and of |ψ±〉, on the other, might be very different. Thus, if the first two states
are localized with gyration radii ξ1, ξ2 � L, the gyration radii of the eigenmodes |ψ±〉 can
be of the order of |R1 − R2| ∼ L. I argue below that a more reliable numerical criterion of
localization can be based on the so-called participation number.

Thus, we have established that geometrical properties of electromagnetic eigenmodes
play a fundamental role in AL. These eigenmodes are completely defined by the sample
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geometry and are independent of the material properties, as long as there are no more than two
constituents in the medium. Therefore, following references [4, 10] we focus on the properties
of the eigenmodes and do not consider, apart from a brief discussion of the resonance condition
and spectral shifts in section 6 below, a specific material- and frequency-dependent model for
the spectral parameter z. It should be noted, however, that polarization or electric field can be
exponentially confined in space for several reasons other than AL. The physical phenomena
that lead to such confinement can strongly depend on material properties of the medium and
should not be confused with AL. In the remainder of this section, we briefly review several
such phenomena.

The first relevant example is the exponential decay of evanescent waves. Evanescent decay
can lead, for example, to exponential confinement of waves in one-dimensional periodic layered
media (photonic crystals). However, evanescent waves are exponentially localized only in one
selected direction and are oscillatory in any direction orthogonal to the former.

The second example is decay due to dissipation. It is well known that a superposition
of perfectly delocalized states can result in an exponentially decaying wave. Consider a
superposition of one-dimensional waves with continuous wavenumbers q (e.g., in a one-
dimensional periodic system):

d(x) =
∫ π/h

−π/h

h dq

2π

eiqx

z −w(q)
. (13)

This equation would describe, for example, propagation of a surface plasmon along a linear
periodic chain of nanospheres of period h, and integration is extended over the first Brillouin
zone of the lattice [20]. It can be shown exactly [21] that for q > k = ω/c, Imw(q) = −2k3/3.
(This is known as the light-cone condition; the surface with q > k plasmon is not coupled to
running waves because, in this case, momentum of the photon cannot be conserved. For the
same reason, a propagating surface plasmon with q > k does not radiate.) We now make the
usual quasiparticle pole approximation, namely

w(q) ≈ Rew(q0)+ (q − q0)

∣∣∣∣∂ Rew(q)

∂q

∣∣∣∣
q=q0

− i
2k3

3
, (14)

where q0 is, by definition, the solution to Re[z − w(q0)] = 0, and find that the dipole moment
decays in space as exp(−|x |/�), where the exponential scale is

� = 1

δ

∣∣∣∣∂ Rew(q)

∂q

∣∣∣∣
q=q0

, (15)

and

δ = −[Im z + 2k3/3] (16)

is a non-negative parameter characterizing the absorption strength of one isolated nanosphere.
In general, it can be shown that δ = 0 in non-absorbing particles (whose dielectric function
ε(ω) is purely real at a given frequency ω). The important point is that we have obtained
exponential decay in space, even though we have superimposed delocalized states (running
waves exp(iqx)). And notice that the localization length in this case is directly defined by
material properties through the relaxation constant δ. Numerical verification of equation (15)
is given in [20].

A third type of localization happens in the off-resonant or weak interaction limit.
Mathematically, this takes place when z is large and we can neglect the term w(q) in the
denominator of (13) (or replace z − w(q) by a q-independent constant). This will result in
polarization localized as sinc(x/h), or in the discrete case, as the Kronecker delta-symbol.
Physically, this is manifestation of the fact that surface plasmons cannot propagate when the
distance between polarizable particles is too large, or the electromagnetic frequency is very far
from the resonance.
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4. Numerical methods

All numerical results shown below were obtained by direct numerical diagonalization of the
interaction operator W . A FORTRAN code has been written to model a random RPC and to
compute elements of the matrix W as well as its eigenvectors and eigenvalues. RPCs were
generated by randomly placing particles inside a two-dimensional L × L box with the only
requirement that each particle does not approach any of the previously placed particles more
closely than one diameter D. Any attempt which did not satisfy this requirement was rejected
and the process was repeated until the total of N particles were placed inside the box. The box
was considered to be embedded in infinite space; thus no periodic or other boundary conditions
different from the usual scattering conditions at infinity were applied.

Diagonalization (computation of eigenvectors and eigenvalues of W ) was accomplished
by utilization of the LAPACK subroutine ZGEEV. Recall that W is a 3N × 3N complex
symmetric matrix. In the case of an RPC, it is also a block matrix. It contains an N × N
block whose eigenvectors correspond to excitations polarized perpendicular to the RPC and
a 2N × 2N block whose eigenvectors correspond to in-plane excitations. Each block can be
diagonalized independently. The code was compiled and executed on an HP rx4640 server
(1.6 GHz Itanium-II cpu) with Intel’s FORTRAN compiler and the MKL mathematical library.
The diagonalization time (for serial execution) for a matrix of the size M scaled approximately
as 30 × (M/1000)3 s. The relatively large computational time is a consequence of W not being
Hermitian. Diagonalization of Hermitian matrices is much more computationally efficient. It
should be noted that the procedure always returned M linearly independent eigenvectors. There
were no quasi-null eigenvectors and, correspondingly, W was not defective.

5. Properties of localized states

We first discuss how to determine if a certain eigenstate |ψn〉 is localized in the Anderson
sense. Various definitions of localizations that has been used for electrons in disordered solids
are reviewed in [22]. In the literature on localization of polar (electromagnetic) modes in
disordered composites, two approaches have been adopted. The first approach is based on
the assumption that the localization length ξn is of the order of the gyration radius of the mode,
〈r 2〉n − 〈r〉2

n , where 〈. . .〉n denotes a weighted average [4, 10]. More specifically, define for the
nth mode and for each inclusion located at r = ri the weight

mn(ri ) =
∑
σ

〈ψn |i, σ 〉〈i, σ |ψn〉, (17)

where σ = x, y, z labels the Cartesian components of three-dimensional vectors. Note that the
argument ri in the expression mn(ri) is discrete. The basis |i, σ 〉 was defined after equation (5).
Since |i, σ 〉 form an orthonormal basis, we have

∑
i,σ |i, σ 〉〈i, σ | = 1. We then recall that the

eigenvectors |ψn〉 are normalized so that 〈ψn |ψn〉 = 1 and find that the weights satisfy the
following sum rule:∑

i

mn(ri ) = 1. (18)

However, note that, in general,
∑

n mn(ri ) �= 1, with the equality holding only in the quasistatic
limit. This is because the basis of eigenvectors |ψn〉 is not orthonormal (although it is complete).
Then, according to references [4, 10], the localization length ξn for the nth eigenmode is defined
as

ξ 2
n =

∑
i

mn(ri)r
2
i −

(∑
i

mn(ri )ri

)2

. (19)
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Figure 1. Gyration radii ξn versus the participation numbers Mn of all modes with polarization
perpendicular to the plane (a) and parallel to the plane (b). Parameters: N = 4000, L = 1000D and
λ = 100D. The numerical value of the correlation coefficient rc between Mn and ξn , calculated for
all modes, is indicated in each plot.

This definition is implicitly based on the assumption of exponential localization. However,
exponential decay (in space) of the weights mn(ri) is impossible for classical waves.
This follows already from the fact that the unperturbed Green’s function (2) in non-
absorbing transparent host media decays algebraically rather than exponentially. However,
the exponential localization is not an absolute requirement for AL. Indeed, the essential feature
of strongly localized states is that such states are discrete [23] (see discussion in section 3).
As a consequence, the localized states are normalized in the usual sense, implying that∫

mn(r)rd−1 dr converges at the upper limit, where d is the dimensionality of embedding space
and we have approximated summation over discrete variables ri by integration over the volume
of the sample. Note that for the RPCs d = 2, even though the interaction is three-dimensional.
Therefore, a state is localized if the weights decay faster than 1/rd . In contrast, delocalized
states belong to the true continuum (in an infinite system). Such states cannot be normalized
in the usual sense but instead satisfy 〈ψμ|ψν〉 = δ(μ − ν), where μ and ν are continuous
variables. Consequently, the above integral is diverging for delocalized states. Now consider
the localization length defined by (19). Without loss of generality, we can assume that the
centre of mass (the second term in (19)) is zero. The first term converges if mn(r) decays
faster than 1/rd+2 and diverges otherwise. Thus, the requirement that ξn � L is, in fact,
much stronger than is necessary for localization (yet, is still weaker than the requirement of
exponential localization). That is, some modes which are truly localized in the Anderson sense
will appear to be delocalized according to the definition (19).

To illustrate this point, I introduce a different localization parameter. Let

Mn =
[

N∑
i=1

m2
n(ri )

]−1

. (20)

We will refer to Mn as the participation number of the nth eigenmode. It is directly analogous to
the participation number defined as the inverse second moment of the probability density or the
inverse fourth moment of the wavefunction [22]. It can be seen that, given the constraint (18),
possible values of Mn lie in the interval 1 � Mn � N . Thus, for example, if all the weights
are equal, mn(ri ) = 1/N , we have Mn = N . If the mode is localized on just one inclusion
i = i0, so that mn(ri ) = δi,i0 , we have Mn = 1. In general, a mode can be considered localized
if Mn � N .

In figure 1, the participation number Mn is compared to ξn for all modes in an RPC
consisting of N = 4000 inclusions. While there is positive correlation between Mn and ξn

(the correlation coefficient rc is indicated in the figure), it can be readily seen that many modes
which are localized in the sense that Mn � N have the gyration radius of the order of L. Thus,
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Figure 2. Inverse radiative quality factors γn (defined by (8)) versus Mn . Same parameters as in
figure 1. The numerical value of the correlation coefficient rc between Mn and γn is indicated in
each plot. Polarization is perpendicular to the RRC (a) and orthogonal to the RPC (b).

while some correlation between Mn and ξn exists, there is virtually no such correlation when
Mn � N .

The second approach to defining localization which has been used in the literature is
based on the eigenmode radiative quality factor [11, 12] Qn . Again, this definition rests
on the analogy with bound states in quantum mechanics and the assumption of exponential
localization. However, it is easy to see that propagating modes in three-dimensional transparent
periodic or homogeneous media are all strictly non-radiating (with γn = 0). An example of a
propagating mode in a one-dimensional periodic chain which is strictly non-radiating is given
in [21]. On the other hand, radiating modes in an RPC can, in principle, be localized. This
is illustrated in figure 2. Here we plot the inverse radiative quality factors γn (defined by (8))
versus the corresponding values of Mn for the same set of parameters as in figure 1. First,
it can be seen that, while the localized modes tend to be of higher quality, the correlation is
not very strong (numerical values of the correlation coefficient rc are indicated in each plot).
Second, there are two visibly distinct ‘branches’ in figure 2(a). The top, lower quality, branch
corresponds to modes with non-vanishing dipole moments. According the criterion Mn � N ,
a significant number of such modes is localized.

6. Localization–delocalization transition

So far, we have seen that some of the modes are localized on just a few inclusions. Now
we investigate if these modes actually form a band. To this end, we plot in figures 3 and 4 the
values of Mn versus the appropriate spectral parameter of the theory, which is the real part of the
corresponding eigenvalue wn . To see that Rewn is, indeed, the spectral parameter analogous
to energy, consider the following. The nth mode is resonantly excited at an electromagnetic
frequency ω such that Re[z(ω) − wn(ω)] = 0, while for an isolated spherical inclusion
the resonance condition is Re[z(ω)] = 0. Thus, the real parts of the eigenvalues describe
shifts of resonant frequencies of collective excitations relative to the respective value in the
non-interacting limit. This can be illustrated with the following simple example. Let the
polarizability of a single inclusion be given by the Lorenz–Lorentz formula with the first non-
vanishing radiative correction [24], namely,

z = 1

α
=

(
2

D

)3
ε + 2εh

ε − εh
− i

2k3

3
, (21)

where εh is the dielectric constant of the transparent host and ε is the dielectric constant of the
inclusions. Further, let ε be given by the Drude formula

ε(ω) = ε0 − ω2
p/ω(ω + i�), (22)
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Figure 3. Participation numbers Mn versus dimensionless spectral parameters D3 Rewn for
different densities of inclusions. The polarization is perpendicular to the RPC; the other parameters
are the same as in figures 1 and 2.

where � is the relaxation and ε0 is the intra-band input to the dielectric function. For simplicity,
let us also assume that ε0 = εh (this will not influence any conclusions in a significant way).
Then the resonance condition for the nth eigenmode takes the following form:

D3 Rewn = 8(1 − 3εhω
2/ω2

p). (23)

Optical resonance for an isolated spherical inclusion takes place at the Fröhlich frequency
ωF = ωp/

√
3εh. The corresponding resonance mode is characterized by Rewn = 0.

Electromagnetic interaction of the inclusions results in the appearance of eigenmodes which
are characterized by Rewn �= 0. Corresponding resonances take place at frequencies that are
different from ωF. Using the above model for z = 1/α and ε, we can estimate that the spectral
shifts shown in figures 3 and 4 are limited to 0.86ωF < ω < 1.12ωF, which corresponds to
−2 < D3 Rewn < 2. Note that much larger spectral shifts can be obtained for larger densities
of inclusions. However, consideration of larger densities requires that calculations are carried
out beyond the dipole approximation.

Modes polarized perpendicular to the RPC are shown in figure 3. The data for parallel
polarization are shown in figure 4. Analysis of figures 3 and 4 clearly reveals a transition
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Figure 4. The same as in figure 3, but for polarization parallel to the RPC.

from delocalized to localized states. In particular, all states with sufficiently large values of
D3| Rewn| are localized. Such states are characterized by relatively strong interaction. In the
case of low density (N = 103, � ≈ 32D), most of the localized states are binary, i.e., involve
excitation of only two inclusions. As the density of inclusions increases, localized modes
involving three, four and more inclusions emerge. For eigenmodes polarized perpendicular to
the RPC plane and in the spectral region Rewn > 0, there are also eigenstates with Mn = 1+ p,
p � 1. It can be argued that such modes are localized on just one inclusion. Yet, Rewn for
such modes is significantly shifted from the non-interacting limit Rewn = 0. This result may
seem to be contradictory. Indeed, if the eigenmode amplitude is very small on all but just one
inclusion, the latter may be seen as not interacting with its environment. The contradiction is
resolved as follows. Consider a mode with eigenvaluew which is localized on the i th inclusion.
The corresponding eigenvector |ψ〉 must then satisfy

w〈iσ |ψ〉 =
∑
j �=i

∑
τ

〈iσ |W | jτ 〉〈 jτ |ψ〉. (24)

Here σ, τ label the Cartesian components of vectors and the index n that labels eigenmodes is
omitted; we thus focus attention only on the selected eigenstate. The eigenmode is localized on
the i th inclusion if m(ri) = 1 − p, where p � 1. Therefore m(ri ) ∼ 1 and, since the weights
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satisfy the sum rule (18), we also have m(r j ) ∼ p/N for j �= i . We now recall that the weights
are quadratic in eigenvector components. Consequently, 〈 jτ |ψ〉 ∼ √

p/N for j �= i while
〈iσ |ψ〉 ∼ 1. It then follows from (24) that

w ∼ N〈W 〉√ p/N = 〈W 〉√ pN , (25)

where 〈W 〉 is the appropriate average of the interaction operator in the right-hand side of (24)
and the above relation is accurate only to the order of magnitude. We thus see that, even if p
is arbitrarily small, the spectral shift may not be small in a sufficiently large sample (large N).
This result is not specific to the RPCs but is valid in two- and three-dimensional disordered
media as well. Of course, the value of 〈W 〉 will depend on the dimensionality of the sample
and on the density of inclusions. We note that 〈W 〉 is the same as the factor Q introduced by
Berry and Percival within the mean-field approximation [25].

The phenomenon of spectrally shifted eigenstates which are localized on just one inclusion
is explained by constructive interference and has no counterpart for electrons in disordered
solids. This is because the analogy between the spectral parameter Rewn and energy is not
complete. Indeed, in the case of the classic Anderson model, an electronic state can be localized
at an anomalously deep local potential. Such state is not influenced in any way by values of
potentials at neighbouring sites since the electron is exponentially localized inside the potential
well. But the localization phenomenon discussed here is, essentially, collective and depends
on the particular realization of the random sample as a whole. Likewise, the binary states seen
in figures 3 and 4 are not necessarily binary states of two closely situated inclusions which
interact with the rest of the sample very weakly (although such states are also possible; see [13]
for properties of isolated dimer states). This is evident already from the data shown in figure 1.
Here some of the binary states (with Mn ≈ 2) are characterized by large gyration radii ξn and,
therefore, are not localized on two closely placed inclusions.

It can also be seen that there is a spectral region (which depends on the density of
inclusions and on polarization of the eigenmodes) where localized and delocalized modes
coexist simultaneously. This spectral region is especially well pronounced in the case
of larger densities and for polarization of eigenmodes parallel to the plane of the RPC.
Coexistence of localized and delocalized modes with very close spectral parameters has been
previously demonstrated for random three-dimensional fractal aggregates and was referred to as
inhomogeneous localization [26]. Inhomogeneous localization was also observed in the case
of RPCs [4]. However, the findings of [4, 26] were based on the quasistatic approximation
and on the definition (19) of the localization length. It was concluded that localization is
inhomogeneous in the whole spectral range. Here we show that inhomogeneous localization
takes place only in a transitional energy band. The width of this transitional band as a function
of system size and density of inclusions needs to be further investigated, especially, without the
use of dipole approximation.

7. Coupling of localized models to the far field

We now consider the possibility of coupling of localized modes to the external field. It has been
previously argued that, in the quasistatic limit, strongly localized modes cannot be effectively
coupled to plane waves. Therefore, such modes were referred to as dark [4]. However, the dark
modes become coupled to external plane waves if one considers first non-vanishing corrections
in k, i.e., goes beyond the quasistatic limit. For example, in [13] it was shown that the
fully antisymmetrical mode of two oscillating dipoles (with zero total dipole moment) can
be effectively coupled to an external plane wave in the limit kL → 0 (which is different from
formally setting k = 0). This coupling is explained by a small phase shift of the incident
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Figure 5. Coupling constants fn (defined by (9)) versus participation numbers Mn . Coupling
constants are computed for an external plane wave kinc = kx̂ and Einc = E0 ẑ (a) and for kinc = k ẑ
and Einc = E0(x̂ + ŷ)/

√
2 (b). The other parameters are the same as in figure 1. The numerical

value of the correlation coefficient rc between Mn and fn is indicated in each plot.

Figure 6. Coupling constants fn (defined by (9)) versus inverse radiative quality factors γn (defined
by (8)) for all modes polarized perpendicular to the RPC with N = 4000 inclusions and different
ratios λ/L , as indicated. In all cases, L = 1000D. The dashed blue line corresponds to the
quasistatic result fn = γn . Numerical values of the correlation coefficient rc between γn and fn are
indicated.

wave and the high-quality factor of the mode. Indeed, it can be seen from (7) that under the
exact resonance condition Re(z − wn) = 0, the excited dipole moments become proportional
to f (eff)

n = Qn fn , where Qn = 1/γn . Thus, even in samples that are small compared to
the wavelength, high-quality modes with zero or vanishing dipole moment can be effectively
excited under the resonance condition. When the sample size is not small compared to the
wavelength, even the strict resonance condition is not required for effective coupling. This is
illustrated in figure 5. Here we plot the coupling constants fn versus Mn for the same set of
parameters as in figures 1 and 2. Since the coupling constants are normalized by the condition∑

n fn = N , a mode is coupled effectively if fn ∼ 1. The modes with fn � 1 are coupled
weakly and the modes with fn ∼ N are coupled strongly. Correlation between Mn and fn

appears to be quite weak (see the figure for numerical values of the correlation coefficient rc).
Most importantly, it can be seen that a considerable fraction of localized modes is effectively
coupled to the external wave, although only delocalized modes can be coupled strongly.

Perhaps the most counter-intuitive fact about the polar eigenmodes that can be understood
only beyond the quasistatics is that the inverse radiative quality factor γn and the coupling
constant fn are not necessarily proportional to each other. In figures 6 and 7 we plot fn
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Figure 7. The same as in figure 6 but for modes polarized in the plane of the RPC; the coupling
coefficients fn are averaged over the two orthogonal in-plane polarizations of the incident wave. The
dashed blue line corresponds to the quasistatic result 〈 fn〉 = γn/2 and 〈· · ·〉 denotes polarization
averaging. Numerical values of the correlation coefficient rc between γn and 〈 fn〉 are indicated.

versus γn for different ratios λ/L and for mode polarization perpendicular to the RPC (figure 6)
and parallel to the RPC (figure 7). First, consider the case of orthogonal polarization. In the
quasistatic limit, it can be shown [14] that (for this particular polarization of the eigenmodes)
fn = γn . This proportionality is clearly visible in the case λ/L = 12.8 and the correlation
coefficient rc between γn and fn exceeds 0.999. However, at smaller values of λ/L, there is no
strict proportionality. Thus, for example, in the case λ/L = 0.02, the correlation coefficient is
rather small (rc = 0.42). It can also be seen that the modes with γn ≈ 1 have coupling constants
which differ by four orders of magnitude and can be either weakly or strongly coupled to the
far field. Likewise, modes that are effectively coupled to the far field ( fn ≈ 1) can be either
weakly radiating (γn � 1) or strongly radiating (γn � 1).

Now consider eigenmodes which are polarized in the RPC plane (figure 7). There are
two linearly independent in-plane polarizations of the incident wave, Einc. While the radiative
factors are independent of Einc, this is not so for fns. For any given direction of Einc, there
is no strict proportionality between γn and fn even in the quasistatic limit. This lack of
proportionality is a consequence of polarization effects. For example, there might be modes
which are strongly coupled to incident waves polarized along the x-axis but not coupled to
waves polarized along the y-axis. However, the polarization effects can be suppressed by taking
the average of fn over two linearly independent incident polarizations. We denote such average
as 〈 fn〉 and it can be shown that in the quasistatic limit 〈 fn〉 = γn/2. This is indeed confirmed
by the data shown in figure 7. Qualitatively, the data in figure 7 are similar to those shown in
figure 6, with even smaller correlation factors.

The finding that weakly radiating modes can be effectively coupled to propagating waves
is counter-intuitive and even may seem to contradict conservation of energy. Indeed, consider
excitation of a mode which is effectively coupled to the far field but is weakly radiating by an
electromagnetic wave that is ‘turned on’ at an initial moment of time t = 0. Since the mode is
weakly radiating, it would not contribute significantly to the scattered field. Thus the incident
wave would seemingly pass through the sample without noticeable scattering or absorption.
However, at a sufficiently large time t = T , a steady state would be reached, in which a finite
electromagnetic energy would be transferred to plasmonic oscillations in the mode. Since



11164 V A Markel

the incident wave was not scattered or absorbed, this contradicts energy conservation. The
contradiction is resolved by noticing that a given mode is weakly radiating only at a fixed
electromagnetic frequency ω. (Beyond the quasistatic limit, both the eigenvectors |ψn〉 and
the eigenvalues wn are functions of ω.) But the transition process described above necessarily
involves incident waves of different frequencies, not all of which would pass through the sample
without scattering. This would result in non-zero extinction of the incident power.

8. Summary and discussion

Localization of polar eigenmodes in random planar composites (RPCs) has been studied
theoretically and numerically without the quasistatic approximation. It was demonstrated
that the localization criteria based on exponential confinement (analogy with electrons in
solids) cannot be applied to polar excitations in disordered composites and in RPCs in
particular. This is because localization of polar eigenmodes is algebraic rather than exponential.
Still, eigenstates with algebraically decaying tails can be square-integrable and discrete, and,
therefore, localized in the Anderson sense.

Note that localized eigenstates whose tails decay according to a power law have been also
discovered for Hamiltonians which can be represented by so-called random banded matrices
with algebraically decaying bands [27]. Elements of such matrices ai j decay as |i − j |−α. Here
|i − j | can be viewed as a liner distance in a one-dimensional system. It was found that for
α < 1 all eigenstates are delocalized while for α > 1 all eigenstates are algebraically localized.
In the critical case α = 1, the structure of eigenstates was found to be multifractal. These
findings were in agreement with the results obtained earlier for random mechanical oscillators
coupled by quasistatic dipole–dipole interaction in [28, 29]. In these references, the long-
range interaction was accounted for perturbatively, but arbitrary dimensionality of space d was
considered, with the conclusion that all eigenstates are delocalized when α � d . We note
that there are several important physical differences between the model considered here and
in [27–29]. For example, in [29] two mechanical oscillators are in resonance irrespectively
of the distance between them if their frequencies exactly coincide. In the model discussed
here, resonances are not mechanical but electromagnetic, with resonance frequency strongly
depending on the geometrical arrangement of dipoles2. Instead of solving the problem of
weakly coupled oscillators of random frequencies, we solve the problem of electromagnetically
coupled, identical polarizable particles. Further, a random banded matrix of size N has N2

mathematically independent elements while the interaction operator W of size N (studied in
this paper) depends on only N mathematically independent variables ri and is not banded.
However, the mathematical reason for algebraic rather than exponential localization appears to
be similar in both models: the algebraic spatial decay of interaction. The theory of localization
for systems whose Hamiltonian can be represented by power-law band random matrices was
further developed in [30–33]. It is interesting to note that electromagnetic interaction in the
radiation zone decays as r−1 exp(ikr) and d = 2 for the RPCs. Thus, the rate of algebraic decay
corresponds to the regime α < d . However, the interaction is modulated by the exponential
phase factor exp(ikr) which makes a direct comparison of results problematic.

Since localized states in an RPC have algebraically decaying tails, the previously used
localization criterion based on the gyration radius of the mode is inapplicable. Consequently,
an alternative approach based on the participation number has been used in this paper. It was
shown that all electromagnetic states in the RPC whose resonance frequencies are shifted from

2 Strictly speaking, the appropriate spectral parameter for the problem of collective electromagnetic excitations
discussed in this paper is z(ω) given by equation (21) rather than the frequency ω itself, with resonances taking place
at frequencies satisfying one of the equations Re[z(ω)−wn] = 0.
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those of non-interacting inclusions by a value larger than a certain threshold are localized. The
band of localized states shown in figures 3 and 4 for sufficiently large values of | Re(wn)| can be
mapped to an interval of electromagnetic frequencies if the material properties of the inclusions
and the host medium are specified. It should be noted that much stronger spectral shifts will
be observed at higher concentrations of inclusions. Consideration of the high-density limit will
require solving the electromagnetic problem without the dipole approximation. When applied
to large random systems, this is a very computationally demanding procedure, the solution to
which, at least for the time being, appears not to be feasible. The author expects that this will
not influence the localization properties of the eigenmodes.

Finally, the possibility of coupling of localized modes to the far field has been studied. It
was shown that, contrary to the previous belief, localized modes in the RPCs can be effectively
coupled to the far field.
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